
42 The Delphi Magazine Issue 44

COM Corner: CoPourri
by Steve Teixeira

This month we’re going to dig
into some COM programming

topics inspired by the questions
and ideas I’ve received from you
over the months in my email inbox.

Incomplete Definition
Question: I’m using the type library
editor to define a new interface. One
of the methods of this interface
includes a parameter of a COM inter-
face type that isn’t supported by
default in the type library editor.
How can I complete this definition?

Before I explain how to define
such a method, it’s important to
understand why the type library
editor behaves the way it does. If
you create a new method in the
type library editor and take a look
at the types available in the Type
column of the Parameters page
(Figure 1), you will see a number of
interfaces, including IDataBroker,
IDispatch, IEnumVARIANT, IFont,
IPicture, IProvider, IStrings, and
IUnknown. Why are these the only
interfaces available? What makes
them so special? They’re not spe-
cial, really, they just happen to be
types that are defined in type
libraries that are used by this type
library. By default, a Delphi type
library automatically uses the
Borland Standard VCL type library
and the OLE Automation type
library. You can configure which
type libraries are used by your
type library by selecting the root

node in the tree view in the left
pane of the type library editor and
choosing the Uses tab in the page
control in the right pane (Figure 2).
The types contained in the type
libraries used by your type library
will automatically become avail-
able in the drop down list shown in
Figure 1.

Armed with this knowledge,
you’ve probably figured out that if
the interface you wish to use as the
method parameter in question is
defined in a type library, you can
simply use that type library: prob-
lem solved. But what if the inter-
face isn’t defined in a type library?
There are certainly quite a few
COM interfaces that are defined by
the SDK only in header or IDL files
and are not found in type libraries.
If this is the case, the best course is
to define the method parameter as
being of type IUnknown. This
IUnknown can be QueryInterfaced in
your method implementation for
the specific interface type you wish
to work with. You should also be
sure to document this method
parameter as an IUnknown that must
support the appropriate interface.
The code in Listing 1 gives an
example of how such a method
could be implemented.

Data Exchange
Question: I wish to exchange a block
of binary data between an Automa-
tion client and server. I understand
that COM doesn’t support exchange
of raw pointers, so how can I accom-
plish this task?

The easiest way to exchange
binary data between Automation
clients and servers is to use
safearrays of bytes. Delphi encap-
sulates safearrays nicely in
OleVariants. The admittedly con-
trived example code in Listings 2
and 3 show client and server units
that use memo text to demonstrate
how to transfer binary data using
safearrays of bytes.

Misfiring Events
Question: I’m employing the tech-
nique you mentioned in the Novem-
ber 1998 issue for surfacing events
on objects in my Automation server.
I’m connecting to my object from
multiple clients, but my events only
fire back to one client. I need the
events to fire back to all clients.
What’s a developer to do?

The example code from the
November 1998 issue, as well as
the events created by Delphi’s
ActiveX Control Wizard, only sup-
ports firing events back to a single
client. In order to fire events back
to multiple clients, you must write
code that enumerates over each
advised connection and calls the
appropriate method on the sink.

procedure TSomeClass.SomeMethod(
SomeParam: IUnknown);

var
Intf: ISomeComInterface;

begin
Intf := SomeParam

as ISomeComInterface;
// remainder of method

implementation
end;

➤ Listing 1

➤ Below: Figure 1

➤ Right: Figure 2

April 1999 The Delphi Magazine 43

This can be done by modifying the
example from November 1998.

To support multiple client con-
nections on a connection point, we
must pass the ckMulti in the Kind
parameter of TConnectionPoints.
CreateConnectionPoint. This met-
hod is called from the Automation
object’s Initialize method:

FConnectionPoints.
CreateConnectionPoint(
AutoFactory.EventIID,
ckMulti, EventConnect);

Before connections can be enu-
merated, we need to obtain a

reference to our IConnectionPoint
Container. From the IConnection
PointContainer, we can obtain the
IConnectionPoint representing the
outgoing interface, and using the
IConnectionPoint.EnumConnections
method, we can obtain an
IEnumConnections interface that can
be used to enumerate the connec-
tions. All of this logic is encapsu-
lated into the method in Listing 4.

After the enumerator interface
has been obtained, calling the sink

for each client is just a matter of
iterating over each connection.
This logic is demonstrated in List-
ing 5, which fires the OnTextChanged
event.

Finally, to enable clients to con-
nect to a single active instance of
the Automation object, we must
call the RegisterActiveObject COM
API function. This function accepts
as parameters an IUnknown for the

➤ Listing 3

➤ Listing 4

unit ServObj;
interface
uses ComObj, ActiveX, Server_TLB;
type
TBinaryData = class(TAutoObject, IBinaryData)
protected
function Get_Data: OleVariant; safecall;
procedure Set_Data(Value: OleVariant); safecall;

end;
implementation
uses ComServ, ServMain;
function TBinaryData.Get_Data: OleVariant;
var
P: Pointer;
L: Integer;

begin
// Move data from memo into array
L := Length(MainForm.Memo.Text);
Result := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(Result);
try
Move(MainForm.Memo.Text[1], P^, L);

finally
VarArrayUnlock(Result);

end;

end;
procedure TBinaryData.Set_Data(Value: OleVariant);
var
P: Pointer;
L: Integer;
S: string;

begin
// Move data from array into memo
L := VarArrayHighBound(Value, 1) -
VarArrayLowBound(Value, 1) + 1;

SetLength(S, L);
P := VarArrayLock(Value);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(Value);

end;
MainForm.Memo.Text := S;

end;
initialization
TAutoObjectFactory.Create(ComServer, TBinaryData,
Class_BinaryData, ciSingleInstance, tmApartment);

end.

unit CliMain;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Server_TLB;
type
TMainForm = class(TForm)
Memo: TMemo;
Panel1: TPanel;
SetButton: TButton;
GetButton: TButton;
OpenButton: TButton;
OpenDialog: TOpenDialog;
procedure OpenButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SetButtonClick(Sender: TObject);
procedure GetButtonClick(Sender: TObject);

private
FServer: IBinaryData;

end;
var MainForm: TMainForm;
implementation
{$R *.DFM}
procedure TMainForm.FormCreate(Sender: TObject);
begin
FServer := CoBinaryData.Create;

end;
procedure TMainForm.OpenButtonClick(Sender: TObject);
begin
if OpenDialog.Execute then
Memo.Lines.LoadFromFile(OpenDialog.FileName);

end;
procedure TMainForm.SetButtonClick(Sender: TObject);
var
P: Pointer;

L: Integer;
V: OleVariant;

begin
// Send memo data to server
L := Length(Memo.Text);
V := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(V);
try
Move(Memo.Text[1], P^, L);

finally
VarArrayUnlock(V);

end;
FServer.Data := V;

end;
procedure TMainForm.GetButtonClick(Sender: TObject);
var
P: Pointer;
L: Integer;
S: string;
V: OleVariant;

begin
// Get server's memo data
V := FServer.Data;
L := VarArrayHighBound(V, 1) - VarArrayLowBound(V, 1) + 1;
SetLength(S, L);
P := VarArrayLock(V);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(V);

end;
Memo.Text := S;

end;
end.

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

➤ Listing 2

44 The Delphi Magazine Issue 44

unit ServAuto;
interface
uses ComObj, ActiveX, AxCtrls, Server_TLB;
type
TServerWithEvents = class(TAutoObject,
IConnectionPointContainer, IServerWithEvents)

private
FConnectionPoints: TConnectionPoints;
FObjRegHandle: Integer;
procedure MemoChange(Sender: TObject);

protected
procedure AddText(const NewText: WideString); safecall;
procedure Clear; safecall;
function GetConnectionEnumerator: IEnumConnections;
property ConnectionPoints: TConnectionPoints read
FConnectionPoints implements IConnectionPointContainer;

public
destructor Destroy; override;
procedure Initialize; override;

end;
implementation
uses Windows, ComServ, ServMain, SysUtils, StdCtrls;
destructor TServerWithEvents.Destroy;
begin
inherited Destroy;
// Make sure I'm removed from ROT
RevokeActiveObject(FObjRegHandle, nil);

end;
procedure TServerWithEvents.Initialize;
begin
inherited Initialize;
FConnectionPoints := TConnectionPoints.Create(Self);
if AutoFactory.EventTypeInfo <> nil then
FConnectionPoints.CreateConnectionPoint(
AutoFactory.EventIID, ckMulti, EventConnect);

// Route main form memo's OnChange event to MemoChange method:
MainForm.Memo.OnChange := MemoChange;
// Register this object with COM's Running Object Table
// (ROT) so other clients can connect to this instance.
RegisterActiveObject(Self as IUnknown,
Class_ServerWithEvents, ACTIVEOBJECT_WEAK,
FObjRegHandle);

end;
procedure TServerWithEvents.Clear;
var
EC: IEnumConnections;
ConnectData: TConnectData;

Fetched: Cardinal;
begin
MainForm.Memo.Lines.Clear;
EC := GetConnectionEnumerator;
if EC <> nil then begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as
IServerWithEventsEvents).OnClear;

end;
end;
procedure TServerWithEvents.AddText(const NewText:
WideString);

begin
MainForm.Memo.Lines.Add(NewText);

end;
procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then (ConnectData.pUnk as
IServerWithEventsEvents).OnTextChanged(
(Sender as TMemo).Text);

end;
end;
function TServerWithEvents.GetConnectionEnumerator:
IEnumConnections;

var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer,
Container));

OleCheck(Container.FindConnectionPoint(
AutoFactory.EventIID, CP));

CP.EnumConnections(Result);
end;
initialization
TAutoObjectFactory.Create(ComServer, TServerWithEvents,
Class_ServerWithEvents, ciMultiInstance, tmApartment);

end.

➤ Listing 6

procedure TMainForm.FormCreate(Sender: TObject);
var ActiveObj: IUnknown;
begin
// Get active object if it's available,
// or create anew if not
GetActiveObject(Class_ServerWithEvents, nil, ActiveObj);
if ActiveObj <> nil then
FServer := ActiveObj as IServerWithEvents

else
FServer := CoServerWithEvents.Create;

FEventSink := TEventSink.Create(Self);
InterfaceConnect(FServer, IServerWithEventsEvents,
FEventSink, FCookie);

end;

➤ Listing 7

object, the CLSID of the object, a
flag indicating whether the regis-
tration is strong (the server should
be AddRefd) or weak (do not AddRef
the server), and a handle that is
returned by reference.

RegisterActiveObject(
Self as IUnknown,
Class_ServerWithEvents,
ACTIVEOBJECT_WEAK,
FObjRegHandle);

Listing 6 shows the complete
source code for the ServAuto unit,
which ties all of these tidbits
together.

On the client side, a small adjust-
ment enables clients to connect to
an active instance if it is already
running. This is accomplished
using the GetActiveObjectCOM API
function as shown in Listing 7.

Steve Teixeira is the Vice President
of Software Development at
DeVries Data Systems, a Silicon
Valley consulting firm. Send your
feedback, ideas, or questions to
steve@dvdata.com

➤ Listing 5

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then (ConnectData.pUnk as
IServerWithEventsEvents).OnTextChanged(
(Sender as TMemo).Text);

end;
end;

	Incomplete Definition
	Data Exchange
	Misfiring Events

